Alternative Split Functions and Dekker's Product

Stef Graillat ${ }^{1}$, Vincent Lefèvre*2, and Jean-Michel Muller ${ }^{3}$
${ }^{1}$ Université Pierre et Marie Curie - LIP6 (UPMC - LIP6) - Université Pierre et Marie Curie [UPMC] Paris VI - 4 place Jussieu 75252 Paris, France
${ }^{2}$ Inria / LIP - Inria, ENS de Lyon, CNRS, UCB Lyon 1, LIP UMR 5668, Lyon - France
${ }^{3}$ CNRS/LIP - Univ Lyon, Cnrs, ENS de Lyon, Inria, UCB Lyon 1, LIP UMR 5668, Lyon, FRANCE France

Résumé

We introduce algorithms for splitting a positive binary floating-point number into two numbers of around half the system precision, using arithmetic operations all rounded either toward $-\infty$ or toward $+\infty$. We use these algorithms to compute "exact" products (i.e., to express the product of two floating-point numbers as the unevaluated sum of two floatingpoint numbers, the rounded product and an error term). This is similar to the classical Dekker product, adapted here to directed roundings.

[^0]
[^0]: *Intervenant

